PROFORMA FOR BIO-DATA

1. Name and full correspondence address: Dr. Satish Anandrao Mahadik,

Department of Physics, Sanjay Ghodawat University, Kolhapur, India.

2. Email(s) and contact number(s): satish.mahadik@sanjayghodawatuniversity.ac.in, Superhydrophobicmaterial2100@gmail.com

+919822946226.

- 3. Institution: Sanjay Ghodawat University, Kolhapur.
- 4. Gender: Male
- 5. Category: General

6. Academic Qualification

S. No.	Degree	Year	Subject	University/Institution	% of marks
1	B.Sc.	2005	Physics	Shivaji University	69 %
				Kolhapur.	
2	M.Sc.	2008	Physics	Shivaji University	61 %
				Kolhapur.	
3	Ph.D	2012	Physics	Shivaji University	-
				Kolhapur.	

7. Ph.D thesis title:

SYNTHESISANDCHARACTERIZATIONOFTRANSPARENTSUPERHYDROPHOBICSILICATHINFILMUSINGSPIN,DIPANDSPRAYCOATINGS.

Guide Name: Prof: A. Venkateswara Rao.

Department of physics Shivaji university Kolhapur

Year of Award. 14 May 2012.

*8. Research Interest:

- Development of Functional nano materials for Agriculture Application
- Multifunctional Superhydrophobic Sol-Gel Coating
- Silica aerogels for insulating applications
- Anticorrosion and antibacterial Coatings

9. Work experience

S.	Positions held	Name of the Institute	From	То	
No.					
1	University teaching	Department of physics,			
	assistant	Shivaji university	2008	2013	
		Kolhapur			
2	Post-doctorate	LASIE			
	researcher (Erasmus	laboratory (CNRS), la	2012	2014	
	mundus European	Rochelle university, la	2013	2014	
	commission, Brussels)	Rochelle, France.			
3	Assistant professor	Adarsh Institute of			
		Technology & Research	2015	2016	
		Centre Vita.			
4	Post-doctoral	University of Seoul, Seoul	2017	2018	
	researcher –	south Korea.	2017	2010	
5	Assistant professor	Krishna mahavidyalaya			
		Rethare, Shivaji	2019	2021	
		university Kolhapur.			
6	Assistant Professor	Sanjay Ghodawat	2021	Still date	
		University, Kolhapur.	2021		

10. Professional Recognition/ Award/ Prize/ Certificate, Fellowship received by the applicant.

S. No.	Positions held	Name of the Institute
1	Post-doctorate fellowship	Université du Québec à
	(selected)	Chicoutimi, Qubec, Canada (2019)
2	Post-Doctorate Fellowship (UOS,	University of Seoul, Seoul, South Korea.
	south korea)	(2017-18)
3	Post-Doctorate (Erasmus Mundus	LaSIE Laboratory (CNRS) La Rochelle
	Post Doctorate fellow – European	University, La Rochelle, France. (2013-14)

	Commission)	
4	Research Fellowship in Sciences for	Department of physics, Shivaji University,
	Meritorious Students – (UGC New	Kolhapur416004, India. (2008-2012)
	Delhi, India)	

11. Publications

S.	Author(s)	Title	Name of	Volume	Page	Year
No.	Aution(3)	The	Journal	Volume	i aye	
1	Satish A.	Enhancing	International	51	676-	2024
	Mahadik,	photoelectrochemical	Journal of		689	
	Sonkawade,	performance through	Hydrogen			
	RG.	surface engineering of	Energy			
	Fernando	CdSe and Al-doped	(IF:7.2)			
	PD	CdSe nanoparticles on				
		ZnO/FTO photoanodes				
2	Satish A.	Designing polyaniline	Journal of	130	382-	2024
	Mahadik,	films with tailored	Industrial and		391	
	Thakur S,	thermal, optical, and	Engineering			
	Fernando P	hydrophobic properties	Chemistry			
	D	via gold nanoparticle	(IF:6.1)			
		integration				
3	Satish A.	Surface properties of	Colloid and	46	1005	2022
	Mahadik,	chlorophyll-sensitized	Interface		58	
	Mahadik SS	TiO2 nanorods for dye-	Science			
		sensitized solar cells	Communicati			
		applications.	ons Volume,			
			(IF:4.91)			
4	Satish A.	Surface morphological	Ceramic	47(20)	2947	15
	Mahadik,	and topographical	International		5-	2021
	Mahadik SS	analysis of	(IF: 5.2)		2948	
		multifunctional			2	

		superhydrophobic sol-				
		gel coatings				
5	Satish A.	Surface morphological	Ceramic	47(20)	2947	15
	Mahadik,	and topographical	International		5-	2021
	Mahadik SS	analysis of	(IF:5.2)		2948	
		multifunctional			2	
		superhydrophobic sol-				
		gel coatings				
6	Relekar BP,	Effect of				
	Mahadik	Electrodeposition	LElectron			
	SA , Jadhav	Potential on Surface	JElection	47(5)	2731	2010
	ST,	Free Energy and		47(5)	-1-8	2010
		Supercapacitance of	(IF.2.52)			
		MnO2 Thin Films				
7	Gawali SA,	Synthesis of zinc oxide				
	Mahadik	nanorods from chemical				
	SA,	bath deposition at	Compd (IE:	704	788-	2017
	Pedraza F,	different pH solutions	6 67)		1-7	
	Pathan HM,	and impact on their	0.07)			
	Jadkar SR.	surface properties				
8	Mahadik	Comparative studies on				
	SA,	water repellent coatings	Prog Org	104	217-	2017
	Pedraza F,	prepared by spin coating	Coatings (IF:	104	1_6	2017
	Mahadik	and spray coating	7.01)		1-0	
	SS.	methods				
9	Mahadik	Biocompatible				
	SA,	superhydrophobic	J Sol-Gel Sci		701-	2017
	Pedraza F,	coating material for	Technol. (IF:	81(3)	1-6	2017
	Mahadik	biomedical applications.	2.6)		1-0	
	SS.					
10	Mahadik	Synthesis and	J Sol-Gel Sci	78(3)	475-	2016

	SA,	characterization of	Technol. (IF:		1-7	
	Pedraza	superhydrophobic-	2.6)			
	FD, Parale	superoleophilic surface.				
	VG,					
11	Mahadik	Monolithic and				
	DB,	shrinkage-free	I Supercrit			
	Mahadik	hydrophobic silica	Fluids (IF:	107	84-1-	2016
	SA, Park H-	aerogels via new rapid	3 9)		8	
	Н.	supercritical extraction	0.0)			
		process.				
12	Mahadik	Silica based				
	SA,	superhydrophobic	J Alloys	663	187-	2016
	Pedraza F,	coating for long-term	Compd. (IF:	000	1-7	2010
	Vhatkar RS	industrial and domestic	6.371)		1-7	
		applications.				
13	S.A.	Synthesis and	J Sol-Gel Sci			
	Mahadik,	characterization of		78	475-	2016
	F.D.	superhydrophobic-	2 6)	10	1-7	
	Pedraza,	superoleophilic surface,	2.0)			
14	Mahadik	Organically modified				
	SA,	silica aerogel with	J Non Cryst			
	Pedraza F,	different functional	Solids (IF:	453	164-	2016
	Parale VG,	silylating agents and	3 81)		1-8	
	Park H-H	effect on their physico-	0.01)			
		chemical properties.				
15	Pedraza F,	Synthesis of ceria based				
	Mahadik	superhydrophobic	Phys Chem		3175	2015
	SA,	coating on Ni20Cr	Chem Phys.	17(47)	0-1-8	2010
	Bouchaud	substrate via cathodic	(IF: 3.95)			
	В.	electrodeposition.				
16	Mahadik	Recoverable and	J Sol-Gel Sci	62(3)	490-	2012

	SA , Rao AV	thermally stable	Technol. (IF:		1-5	
		superhydrophobic silica	2.6)			
		coating.				
17	Mahadik SA,	Durability and restoring			262-	2013
	Fernando	properties in silica-based		405	1.7	2010
	PD, Wagh PB,	coatings.	Sci.(IF: 9.9)		. ,	
18	Mahadik	Superhydrophobic silica	Applied			
		coating by dip coating	Surface	277	67-1-	2013
		method	Science		6	
	кo		(IF: 7.15)			
19	Parale VG,	Sol-gel preparation of				
	Kavale MS,	PTMS modified	l Porous			
	Mahadik	hydrophobic and	Mater (IE:	20(4)	733-	2013
	SA , Rao	transparent silica	2 52)		1-7	
	AV,	coatings.	2.52)			
	Mullens S.					
20	Parale VG,	OTES modified	Ceram Int		835-	2013
	Mahadik	transparent dip coated	(IE: 5 2)	39(1)	1-6	2010
	SA.	silica coatings.	(11.3.2)			
21	Parale VG,	Wettability study of				
	Mahadik	surface modified silica	J Sol-Gel Sci		573-	2012
	SA , Kavale	aerogels with different	Technol. (IF:	63(3)	1-6	
	MS,	silvlating agents	2.6)			
	Rao AV,					
22	Mahadik	Thermally stable and				
	SA,	transparent	J Sol-Gel Sci		580–	
	Mahadik	superhydrophobic sol-	Technol. (IF:	63(3)	586	2012
	DB, Kavale	gel coatings by spray	2.6)			
	MS.	method				

23	Kavale MS,	Enrichment in				
	Mahadik	hydrophobicity and				
	SA,	scratch resistant	J Sol-Gel Sci			
	Mahadik	properties of silica films	Technol (IF:	64(1)	9–16	2012
	DB,	on glass by grafted	2.6)			
		microporosity of the				
		network.				
24	Ganbavle V	Self-cleaning silica	Surface and			
	V,, Mahadik	coatings on glass by	Coatings	205(23-	5338	2011
	SA , Rao	single step sol-gel route	Technology	24)	-1	
	A.V.		(IF: 5.6)			
25	Rao A V	Mechanically stable and	Applied			
	Mahadik S	corrosion resistant	Surface		5772	2011
	A Charles	superhydrophobic sol-	Science	257(13)	_1	2011
	Kannonstoin	gel coatings on copper	(IE: 7 15)		- 1	
	Rappenstein	substrate	(11.7.13)			
26	Mahadik	Transparent	Applied			
	SA,	superhydrophobic silica	Surface		222	2010
	Mukherjee	coatings on glass by sol-	Sunace	257(2)	333-	2010
	SK, Rao A	gel method				
	V.		(17: 1.13)			

12. Research project

S. No.	Title of Project	Source of Funds	Amount	Duration
1	Development of	Sanjay Ghodawat	1,50,000	2023-24
	Superhydrophobic coating for anti- corrosion Applications	University, Kolhapur		
2	Development of Climate-Proof	BIRAC, India	8000000	Under review
	Superhydrophobic Sol-Gel	With Global Co- Pl		
	Coating for Hygienic Public Health	Prof. Fernando		
	in India	PEDRAZA, France.		

3	Development of Durable,	Bharat seats polymer	900000	Under review
	Transparent Epoxy-nano Portable	tech grants , venture		
	Spray for Robust	center, Pune		
	Superhydrophobic Auto Parts			
	Application			
4	Bharat seats polymer tech fellows	Venture center, Pune	100000	Submitted

13. Books/Reports/Chapters/General articles etc.

S.	Title	Author's	Publisher	Year of
No.		name		Publication
1	Sol-Gel based	Satish.A.	Tribology in Coatings and	2022
	Superhydrophobic	Mahadik, F.	Surface Treatment:	
	Multifunctional	Pedraza,	Technology, Properties, and	
	Coatings and its	Sarika. S.	Applications, IGI Global, an	
	Tribological	Mahadik	international publisher of	
	Properties		progressive academic	
			research.	
			DOI: 10.4018/978-1-7998-	
			9683-8.ch012	

14. Any other Information (maximum 500 words)

(1) Research Accomplishments:

My scientific research began in material science during my studies toward a Master of Science degree and Ph.D at Shivaji University Kolhapur where I was a UGC Meritorious fellow in 2006-2012. I studied the sol-gel formulation of ORMOSIL, with the goal of superhydrophobic coating for various industrial applications. Sol-gel formulations of ORMOSIL based coatings to provide multifunctionality have been successfully extrapolated to self-cleaning with long-term durability, anti-corrosion, mechanical robustness, scratch resistance, reversible superhydrophobicity, transparency, superhydrophobicity-superoleophobicity, acid resistance, photocatalytic self-cleaning, bio-compatibility, superoleophobicity, thermal stability at higher temperatures (300-1200

°C). These coatings are mostly based on ORMOSIL based materials, and inorganic compound including ZnO, CeO₂, TiO₂, they deposited with different methods including spray, spin, dip, layer by layer depositions, Chemical bath deposition, & electro-chemical deposition. The superhydrophobicity and multi-functionalities they confer has been clearly described in our previous publications. Their dual scale morphology makes them susceptible to superhydrophobicity. However, fundamental results have shown the great dependency on the surface engineering that result in multifunctionality of the surfaces as shown in fig.1 below.

All above novel results were developed in co-operation with various leading international and national reputed institutes including Shivaji University, Kolhapur, India, University of La Rochelle, France, BARC, Mumbai, India, University of Seoul, Yonsei University, Seoul, Korea, University of Poitiers, Poitiers, France, Flemish Institute for Technological Research, Boeretang, Belgium, NCL, Pune, CSIR- National Aerospace laboratory, Bangalore, India, GSSC, Savitribai Phule Pune University, Pune, Bursa Technical University, Turkey and AITRC, India have been further explored during 2008-2019 by developing a systematic study on the Multifunctional Coatings. However, the influence of outdoor conditions, corrosion, mechanical damage, acid resistance on the final properties of these superhydrophobic coatings shall be studied as they have been shown to change both the chemical composition and the microstructure of the coatings. More precisely, the goal is to correlate the chemical composition/ microstructure /morphology/wettability/ surface roughness with surface energy properties to provide "lotus effect" to the Multifunctional Coatings in the presence of organic or inorganic contents.

Fig.1 Some our exciting results on Multifunctional Coatings

Nanostructured materials have been developed for various applications including superhydrophobic silica aerogels for insulation and addressing oil spills, as well as photo-catalytic coatings for volatile organic compound degradation and supercapacitors. Sol-gel-based nanostructured ORMOSIL materials with multifunctional properties could potentially serve as anti-corrosion coatings for diverse substrates. However, detailed exploration of such coatings is limited. The aim is to understand how to customize compositions and microstructures of multifunctional coatings for effective corrosion protection.